
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 08 – Lists

www.umbc.edu

Last Class We Covered

• Using while loops

– Syntax of a while loop

– Interactive loops

– Infinite loops and other problems

• Nested Loops

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about lists and what they are used for

– To be able to create and update lists

– To learn two different ways to mutate a list

• append() and remove()

• To understand how two-dimensional lists work

• To get more practice with while loops

– Sentinel values

4

www.umbc.edu5

Introduction to Lists

www.umbc.edu

Exercise: Average Three Numbers

• Read in three numbers and average them
num1 = int(input("Please enter a number: "))

num2 = int(input("Please enter a number: "))

num3 = int(input("Please enter a number: "))

print((num1 + num2 + num3) / 3)

• Easy! But what if we want to do 100 numbers?
Or 1000 numbers?

• Do we want to make 1000 variables?

6

www.umbc.edu

Using Lists

• We need an easy way to hold individual data
items without needing to make lots of variables

– Making num1, num2, ..., num99, num100

is time-consuming and impractical

• Instead, we can use a list to hold our data

–A list is a data structure: something that
holds multiple pieces of data in one structure

7

www.umbc.edu

Using Lists: Individual Variables

• We need an easy way to refer to each individual
variable in our list

• What are some possibilities?

– Math uses subscripts (x1, x2, x3, etc.)

– Instructions use numbers (“Step 1: Combine…”)

• Programming languages use a different syntax

– x[1], x[0], instructions[1], point[i]

8

www.umbc.edu

Numbering in Lists

• Lists are numbered the same as strings

– Index from the left: start at 0

– Index from the right: start at -1

9

0 1 2 3 4

-5 -4 -3 -2 -1

www.umbc.edu

List Syntax

• Use [] to assign initial values (initialization)

myList = [1, 3, 5]

words = ["Hello", "to", "you"]

• And to refer to individual elements of a list
>>> print(words[0])

Hello

>>> myList[0] = 2

10

www.umbc.edu

Properties of a List

• Heterogeneous (multiple data types!)

• Contiguous (all together in memory)

• Ordered (numbered from 0 to n-1)

• Have instant (“random”) access to any element

• Elements are added using the append method

• Are “mutable sequences of arbitrary objects”

11

www.umbc.edu

List Example: Grocery List

• You are getting ready to head to the grocery
store to get some much needed food

• In order to organize your
trip and to reduce the
number of impulse buys,
you decide to make a
grocery list

12 Image from flickr.com

www.umbc.edu

List Example: Grocery List

• Inputs:

–3 items for grocery list

• Process:

– Store groceries using list data structure

• Output:

– Final grocery list

13

www.umbc.edu

Grocery List Code
def main():

print("Welcome to the Grocery Manager 1.0")

grocery_list = [None]*3 # initialize list value and size

get grocery items from the user

grocery_list[0] = input("Please enter your first item: ")

grocery_list[1] = input("Please enter your second item: ")

grocery_list[2] = input("Please enter your third item: ")

print out the items they selected

print(grocery_list[0])

print(grocery_list[1])

print(grocery_list[2])

main()

14

www.umbc.edu

Grocery List Demonstration
• Here’s a demonstration

of what the code is doing

bash-4.1$ python groceries.py

Please enter your first item: milk

Please enter your second item: eggs

Please enter your third item: oil

15

0 1 2

milk eggs oil

grocery_list = [None]*3

grocery_list[0] = input("Please enter ...: ")

grocery_list[1] = input("Please enter ...: ")

grocery_list[2] = input("Please enter ...: ")

www.umbc.edu

List Example: Grocery List

• What would make this process easier?

• Loops!

– Instead of asking for each item individually, we
could keep adding items to the list until we
wanted to stop (or the list was “full”)

• We’ll update our program to use a loop soon

– For now, let’s talk about while loops a bit more

16

www.umbc.edu17

Mutating Lists

www.umbc.edu

Mutating Lists

• Remember that lists are defined as
“mutable sequences of arbitrary objects”

– “Mutable” just means we can change them

• So far, the only thing we’ve changed
has been the content of the list

–But we can also change a list’s size,
by adding and removing elements

18

www.umbc.edu

Two List Functions

• There are two functions we’ll cover today
that can add and remove things to our lists

– There are more, but we’ll cover them later

.append()

.remove()

19

www.umbc.edu

List Function: append()

• The append() function lets us add items to
the end of a list, increasing its size
listName.append(itemToAppend)

• Useful for creating a list from flexible input

– Allows the list to expand as the user needs

– No longer need to initialize lists to [None]*num

• Can instead start with an empty list []

20

www.umbc.edu

Example of append()

• We can use append() to create a list of
numbers (continuing until the user enters 0)

values = [] # initialize the list to be empty

userVal = 1 # give loop variable an initial value

while userVal != 0:

userVal = int(input("Enter a number, 0 to stop: "))

if userVal != 0: # only append if it's valid

values.append(userVal) # add value to the list

21

www.umbc.edu

Example of append()

• We can use append() to create a list of
numbers (continuing until the user enters 0)

while userVal != 0:

userVal = int(input("Enter a number, 0 to stop: "))

if userVal != 0: # only append if it's valid

values.append(userVal) # add value to the list

22

values = 17

0

22

1

5

2

-6

3

13

4

www.umbc.edu

List Function: remove()

• The remove() function lets us remove an
item from the list – specifically, it finds and
removes the first instance of a given value
listName.remove(valueToRemove)

• Useful for deleting things we don’t need

– For example, removing students who have
dropped the class from the class roster

– Instead of the list having “empty” elements

23

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

24

roster = Adam

0

Alice

1

Andy

2

Ariel

3

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster.remove("Adam") # Adam has dropped the class

25

roster = Adam

0

Alice

1

Andy

2

Ariel

3

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster.remove("Adam") # Adam has dropped the class

roster.remove("Bob") # Bob is not in the roster

26

roster = Alice

0

Andy

1

Ariel

2

www.umbc.edu27

Sentinel Values and while Loops

www.umbc.edu

When to Use while Loops

• while loops are very helpful when you:

–Want to get input from the user that
meets certain specific conditions

• Positive number

• A non-empty string

–Want to keep getting input until some “end”

• User inputs a value that means they’re finished

• Reached the end of some input (a file, etc.)

28

what we’re
covering now

www.umbc.edu

Sentinel Values

• Sentinel values “guard” the end of your input

• They are used:

– When you don’t know the number of entries

– In while loops to control data entry

– To let the user indicate an “end” to the data

• Common sentinel values include:

– STOP, -1, 0, QUIT, and EXIT

29 Image from publicdomainpictures.net

www.umbc.edu

Sentinel Loop Example

• Here’s an example, where we ask the user to
enter student names:

students = []

name = input("Please enter a student, or 'QUIT' to stop: ")

while name != "QUIT":

students.append(name)

name = input("Please enter a student, or 'QUIT' to stop: ")

30

www.umbc.edu

Sentinel Loop Example

• Here’s an example, where we ask the user to
enter student names:

students = []

name = input("Please enter a student, or 'QUIT' to stop: ")

while name != "QUIT":

students.append(name)

name = input("Please enter a student, or 'QUIT' to stop: ")

31

initialize the loop
variable with user input

check for the termination condition

get a new value for the loop variable

www.umbc.edu

Sentinel Loop Example

• Here’s an example, where we ask the user to
enter student names:

students = []

name = input("Please enter a student, or 'QUIT' to stop: ")

while name != "QUIT":

students.append(name)

name = input("Please enter a student, or 'QUIT' to stop: ")

32

make sure to save the value
before asking for the next one

make sure to tell the user
how to stop entering data

www.umbc.edu

Priming Reads

• This loop example uses a priming read

– We “prime” the loop by reading in information
before the loop runs the first time

• We duplicate the line of code asking for input

– Once before the loop

– Once inside the loop

33

www.umbc.edu

Loop Without a Priming Read

• It’s also possible to do a sentinel loop without
a priming read

• Instead of duplicating the input, we must
duplicate something else… what?

– The conditional that is checking the sentinel

• We must also declare the sentinel variable
and a starting value before the loop begins

34

www.umbc.edu

Example Without a Priming Read
students = []

name = "" # can be set to anything other than 'QUIT'

while name != "QUIT":

name = input("Please enter a student, or 'QUIT' to stop: ")

check if it's a sentinel before appending to list

if name != "QUIT":

students.append(name)

• If we don’t check, we will add a student called
“QUIT” to the list before exiting the loop

35

www.umbc.edu

Sentinel Loop Style Choice

• You can use either sentinel loop style

• Priming read

– Requires duplication of input

– Fewer lines of code overall

• Non-priming read

– Requires duplication of conditional checking

– All of the data input happens inside the loop

36

www.umbc.edu

Time for…

37

www.umbc.edu

Livecoding: Updated Grocery List

• Let’s update our grocery list program to be as
long as the user wants, using a while loop and
a sentinel value of “STOP”

– Print out the grocery list (item by item) at the end

• You will need to use:

– At least one while loop (a sentinel loop)

– Conditionals

– A single list
38

www.umbc.edu39

Other List Operations

www.umbc.edu

Previously Seen Operations

• Many of the operations we saw on strings are
possible with lists

• Which of the following works with lists?
– Concatenation (+)

– Repetition (*)

– Indexing

– Slicing

– .lower() and .upper()

– len()

40

www.umbc.edu

Concatenation

• Concatenation does work on lists!

– But it has the same limit as string concatenation

– You can only concatenate lists with lists

• So this works:

bookList + supplyList

• But this doesn’t:

animalList + "horse"

41

www.umbc.edu

Repetition

• Repetition does work on lists!
>>> animalList = ["dog", "cat", "ferret"]

>>> print(animalList * 3)

• What will this print out?

['dog', 'cat', 'ferret', 'dog', 'cat',

'ferret', 'dog', 'cat', 'ferret']

• The list gets “added” together multiple times,
so the order of the elements stays the same

42

www.umbc.edu

Indexing

• Indexing does work on lists!

• In the exact same way it does for strings

• Can use negative or positive indexing
studentNames[16]

courseTitles[-4]

43

www.umbc.edu

Slicing

• Slicing does work on lists!

• In the exact same way it does for strings

• Slicing goes “up to but not including”
the end of the slice
>>> lst = [17, "A", -22, True, "Hello"]

>>> print(lst[1:3])

['A', -22]

44

www.umbc.edu

.lower() and .upper()

• These operations do not work on lists!

– They don’t make sense for a list

• In the same way, .append() and
.remove() don’t work on strings

• If you try, you get an error about attributes:
AttributeError: 'str' object has no

attribute 'remove'

45

www.umbc.edu

.len()

• Calling len() does work on lists!

• In the exact same way it does for strings

• Returns the length of the list

– In other words, the number of elements

46

www.umbc.edu47

Two-Dimensional Lists

www.umbc.edu

Two-Dimensional Lists

• We’ve looked at lists as being one-dimensional

–But lists can also be two- (or three- or
four- or five-, etc.) dimensional!

• Lists can hold any type (int, string, float, etc.)

– This means they can also hold another list

48

www.umbc.edu

Two-Dimensional Lists: A Grid

• It may help to think of 2D lists as a grid

twoD = [[1,2,3], [4,5,6], [7,8,9]]

49

1 2 3

4 5 6

7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid
• You access an element by the index of

its row, and then the column

–Remember – indexing starts at 0!

50

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid
• You access an element by the index of

its row, and then the column

–Remember – indexing starts at 0!

51

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

index: [0][2]

index: [1][0]

index: [2][1] index: [2][2]

www.umbc.edu

Lists of Strings

• Remember, a string is like a list of characters

• So what is a list of strings?

– Like a two-dimensional list!

• We have the index of the string (the row)

• And the index of the character (the column)

52

www.umbc.edu

Lists of Strings

• Lists in Python don’t have to be rectangular

– They can also be jagged (rows different lengths)

• Anything we could do
with a one-dimensional
list, we can do with a
two-dimensional list

– Slicing, index, appending

53

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names

www.umbc.edu

Practice: List of Strings

1. Add a “b” and a “y” to the end of “Bob”

2. Print out the second letter in “Evan”

3. Change “Alice” to “Alyce”

54

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names[1] = names[1] + "b"

names[1] = names[1] + "y"

print(names[2][1])

names[0] = "Alyce"

names

www.umbc.edu

Practice: List of Strings (Advanced)

1. Add “Ahmed” to the end of the list of names

2. Add “Eve” to the front of the list of names

3. Change “Evan” to “Kevin”

55

0 1 2 3 4

0 A l y c e

1 B o b b y

2 E v a n

names.append("Ahmed")

names = ["Eve"] + names

names[3] = "Kevin"

the location changed!
names

www.umbc.edu

Practice Problems

• Create a directory inside your “201” folder,
called “practice”; go into the new folder
– If you already created “practice”, no need to do so again

• Copy this file into your new folder
/afs/umbc.edu/users/k/k/k38/pub/cs201/listPractice.py

• Complete the files according to its instructions

• Remember, the command to copy is “cp”:
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/listPractice.py .

56

